Historia
La primera contribución importante se debe a Aristóteles. Aristóteles define, el movimiento, lo dinámico (το δυνατόν), como “La realización acto, de una capacidad o posibilidad de ser potencia, en tanto que se está actualizando”. El problema esta en que Aristóteles invierte el estudio de la cinemática y dinámica, estudiando primero las causas del movimiento y después el movimiento de los cuerpos. Este error dificultó el avance en el conocimiento del fenómeno del movimiento hasta, en primera instancia, San Alberto Magno, que fue quien advirtió este error, y, en ultima instancia hasta, Galileo Galilei e Isaac Newton. De hecho, Thomas Bradwardine, en 1328, presentó en su De proportionibus velocitatum in motibus una ley matemática que enlazaba la velocidad con la proporción entre motivos a fuerzas de resistencia; su trabajo influyó la dinámica medieval durante dos siglos, pero, por lo que se ha llamado un accidente matemático en la definición de «acrecentar», su trabajo se descartó y no se le ha dio reconocimiento histórico en su día.1
Ya con Galileo sus experimentos sobre cuerpos uniformemente acelerados condujeron a Newton a formular sus leyes fundamentales del movimiento, las cuales presentó en su obra principal Philosophiae Naturalis Principia Mathematica Los científicos actuales consideran que las leyes que formuló Newton dan las respuestas correctas a la mayor parte de los problemas relativos a los cuerpos en movimiento, pero existen excepciones. En particular, las ecuaciones para describir el movimiento no son adecuadas cuando un cuerpo viaja a altas velocidades con respecto a la velocidad de la luz o cuando los objetos son de tamaño extremadamente pequeños comparables a los tamaños moleculares.
La comprensión de las leyes de la dinámica clásica le ha permitido al hombre determinar el valor, dirección y sentido de la fuerza que hay que aplicar para que se produzca un determinado movimiento o cambio en el cuerpo. Por ejemplo, para hacer que un cohete se aleje de la Tierra, hay que aplicar una determinada fuerza para vencer la fuerza de gravedad que lo atrae; de la misma manera, para que un mecanismo transporte una determinada carga hay que aplicarle la fuerza adecuada en el lugar adecuado.
[editar] Cálculo en dinámica
A través de los conceptos de desplazamiento, velocidad y aceleración es posible describir los movimientos de un cuerpo u objeto sin considerar cómo han sido producidos, disciplina que se conoce con el nombre de cinemática. Por el contrario, la dinámica es la parte de la mecánica que se ocupa del estudio del movimiento de los cuerpos sometidos a la acción de las fuerzas.
El cálculo dinámico se basa en el planteamiento de ecuaciones del movimiento y su integración. Para problemas extremadamente sencillos se usan las ecuaciones de la mecánica newtoniana directamente auxiliados de las leyes de conservación. La ecuación esencial de la dinámica es la segunda ley de Newton (o ley de Newton-Euler) F=m*a donde F es la resultante de las fuerzas aplicadas, el m la masa y la a la aceleración.
[editar] Leyes de conservación
Artículo principal: ley de conservación
Las leyes de conservación pueden formularse en términos de teoremas que establecen bajo qué condiciones concretas una determinada magnitud “se conserva” (es decir, permanece constante en valor a lo largo del tiempo a medida que el sistema se mueve o cambia con el tiempo). Además de la ley de conservación de la energía las otras leyes de conservación importante toman la forma de teoremas vectoriales. Estos teoremas son:
1. El teorema de la cantidad de movimiento, que para un sistema de partículas puntuales requiere que las fuerzas de las partículas sólo dependan de la distancia entre ellas y estén dirigidas según la línea que las une. En mecánica de medios continuos y mecánica del sólido rígido pueden formularse teoremas vectoriales de conservación de cantidad de movimiento.
2. El teorema del momento cinético, establece que bajo condiciones similares al anterior teorema vectorial la suma de momentos de fuerza respecto a un eje es igual a la variación temporal del momento angular.
[editar] Ecuaciones de movimiento
Artículo principal: ecuación de movimiento
Existen varias formas de plantear ecuaciones de movimiento que permitan predecir la evolución en el tiempo de un sistema mecánico en función de las condiciones iniciales y las fuerzas actuantes. En mecánica clásica existen varias formulaciones posibles para plantear ecuaciones:
• La mecánica newtoniana que recurre a escribir directamente ecuaciones diferenciales ordinarias de segundo orden en términos de fuerzas y en coordenadas cartesianas. Este sistema conduce a ecuaciones difícilmente integrables por medios elementales y sólo se usa en problemas extremadamente sencillos, normalmente usando sistemas de referencia inerciales.
• La mecánica lagrangiana, este método usa también ecuaciones diferenciales ordinarias de segundo orden, aunque permite el uso de coordenadas totalmente generales, llamadas coordenadas generalizadas, que se adapten mejor a la geometría del problema planteado. Además las ecuaciones son válidas en cualquier sistema de referencia sea éste inercial o no. Además de obtener sistemas más fácilmente integrables el teorema de Noether y las transformaciones de coordenadas permiten encontrar integrales de movimiento, también llamadas leyes de conservación, más sencillamente que el enfoque newtoniano.
• La mecánica hamiltoniana es similar a la anterior pero en él las ecuaciones de movimiento son ecuaciones diferenciales ordinarias son de primer orden. Además la gama de transformaciones de coordenadas admisibles es mucho más amplia que en mecánica lagrangiana, lo cual hace aún más fácil encontrar integrales de movimiento y cantidades conservadas.

  1. No trackbacks yet.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: