ecuaciones de dinamica

 primera contribución importante se debe a Aristóteles. Aristóteles define, el movimiento, lo dinámico (το δυνατόν), como “La realización acto, de una capacidad o posibilidad de ser potencia, en tanto que se está actualizando”. El problema esta en que Aristóteles invierte el estudio de la cinemática y dinámica, estudiando primero las causas del movimiento y después el movimiento de los cuerpos. Este error dificultó el avance en el conocimiento del fenómeno del movimiento hasta, en primera instancia, San Alberto Magno, que fue quien advirtió este error, y, en ultima instancia hasta, Galileo Galilei e Isaac Newton. De hecho, Thomas Bradwardine, en 1328, presentó en su De proportionibus velocitatum in motibus una ley matemática que enlazaba la velocidad con la proporción entre motivos a fuerzas de resistencia; su trabajo influyó la dinámica medieval durante dos siglos, pero, por lo que se ha llamado un accidente matemático en la definición de «acrecentar», su trabajo se descartó y no se le ha dio reconocimiento histórico en su día.[1]

Ya con Galileo sus experimentos sobre cuerpos uniformemente acelerados condujeron a Newton a formular sus leyes fundamentales del movimiento, las cuales presentó en su obra principal Philosophiae Naturalis Principia Mathematica Los científicos actuales consideran que las leyes que formuló Newton dan las respuestas correctas a la mayor parte de los problemas relativos a los cuerpos en movimiento, pero existen excepciones. En particular, las ecuaciones para describir el movimiento no son adecuadas cuando un cuerpo viaja a altas velocidades con respecto a la velocidad de la luz o cuando los objetos son de tamaño extremadamente pequeños comparables a los tamaños moleculares.

La comprensión de las leyes de la dinámica clásica le ha permitido al hombre determinar el valor, dirección y sentido de la fuerza que hay que aplicar para que se produzca un determinado movimiento o cambio en el cuerpo. Por ejemplo, para hacer que un cohete se aleje de la Tierra, hay que aplicar una determinada fuerza para vencer la fuerza de gravedad que lo atrae; de la misma manera, para que un mecanismo transporte una determinada carga hay que aplicarle la fuerza adecuada en el lugar adecuado.

[editar] Cálculo en dinámica

A través de los conceptos de desplazamiento, velocidad y aceleración es posible describir los movimientos de un cuerpo u objeto sin considerar cómo han sido producidos, disciplina que se conoce con el nombre de cinemática. Por el contrario, la dinámica es la parte de la mecánica que se ocupa del estudio del movimiento de los cuerpos sometidos a la acción de las fuerzas.

El cálculo dinámico se basa en el planteamiento de ecuaciones del movimiento y su integración. Para problemas extremadamente sencillos se usan las ecuaciones de la mecánica newtoniana directamente auxiliados de las leyes de conservación. La ecuación esencial de la dinámica es la segunda ley de Newton (o ley de Newton-Euler) F=m*a donde F es la resultante de las fuerzas aplicadas, el m la masa y la a la aceleración.

[editar] Leyes de conservación

Artículo principal: ley de conservación

Las leyes de conservación pueden formularse en términos de teoremas que establecen bajo qué condiciones concretas una determinada magnitud “se conserva” (es decir, permanece constante en valor a lo largo del tiempo a medida que el sistema se mueve o cambia con el tiempo). Además de la ley de conservación de la energía las otras leyes de conservación importante toman la forma de teoremas vectoriales. Estos teoremas son:

  1. El teorema de la cantidad de movimiento, que para un sistema de partículas puntuales requiere que las fuerzas de las partículas sólo dependan de la distancia entre ellas y estén dirigidas según la línea que las une. En mecánica de medios continuos y mecánica del sólido rígido pueden formularse teoremas vectoriales de conservación de cantidad de movimiento.
  2. El teorema del momento cinético, establece que bajo condiciones similares al anterior teorema vectorial la suma de momentos de fuerza respecto a un eje es igual a la variación temporal del momento angular.

[editar] Ecuaciones de movimiento

Artículo principal: ecuación de movimiento

Existen varias formas de plantear ecuaciones de movimiento que permitan predecir la evolución en el tiempo de un sistema mecánico en función de las condiciones iniciales y las fuerzas actuantes. En mecánica clásica existen varias formulaciones posibles para plantear ecuaciones:

  • La mecánica newtoniana que recurre a escribir directamente ecuaciones diferenciales ordinarias de segundo orden en términos de fuerzas y en coordenadas cartesianas. Este sistema conduce a ecuaciones difícilmente integrables por medios elementales y sólo se usa en problemas extremadamente sencillos, normalmente usando sistemas de referencia inerciales.
  • La mecánica lagrangiana, este método usa también ecuaciones diferenciales ordinarias de segundo orden, aunque permite el uso de coordenadas totalmente generales, llamadas coordenadas generalizadas, que se adapten mejor a la geometría del problema planteado. Además las ecuaciones son válidas en cualquier sistema de referencia sea éste inercial o no. Además de obtener sistemas más fácilmente integrables el teorema de Noether y las transformaciones de coordenadas permiten encontrar integrales de movimiento, también llamadas leyes de conservación, más sencillamente que el enfoque newtoniano.
  • La mecánica hamiltoniana es similar a la anterior pero en él las ecuaciones de movimiento son ecuaciones diferenciales ordinarias son de primer orden. Además la gama de transformaciones de coordenadas admisibles es mucho más amplia que en mecánica lagrangiana, lo cual hace aún más fácil encontrar integrales de movimiento y cantidades conservadas.
  • El método de Hamilton-Jacobi es un método basado en la resolución de una ecuación diferencial en derivadas parciales mediante el método de separación de variables, que resulta el medio más sencillo cuando se conocen un conjunto adecuado de integrales de movimiento.

 Dinámica de sistemas mecánicos

En física existen dos tipos importantes de sistemas físicos los sistemas finitos de partículas y los campos. La evolución en el tiempo de los primeros pueden ser descritos por un conjunto finito de ecuaciones diferenciales ordinarias, razón por la cual se dice que tienen un número finito de grados de libertad. En cambio la evolución en el tiempo de los campos requiere un conjunto de ecuaciones complejas. En derivadas parciales, y en cierto sentido informal se comportan como un sistema de partículas con un número infinito de grados de libertad.

La mayoría de sistemas mecánicos son del primer tipo, aunque también existen sistemas de tipo mecánico que son descritos de modo más sencillo como campos, como sucede con los fluidos o los sólidos deformables. También sucede que algunos sistemas mecánicos formados idealmente por un número infinito de puntos materiales, como los sólidos rígidos pueden ser descritos mediante un número finito de grados de libertad.

Dinámica de la partícula

Artículo principal: Dinámica del punto material

La dinámica del punto material es una parte de la mecánica newtoniana en la que los sistemas se analizan como sistemas de partículas puntuales y que se ejercen fuerzas a distancia instantáneas.

En la teoría de la relatividad no es posible tratar un conjunto de partículas cargadas en mútua interacción, usando simplemente las posiciones de las partículas en cada instante, ya que en dicho marco se considera que las acciones a distancia viola la causalidad física. En esas condiciones la fuerza sobre una partícula debida a las otras depende de las posiciones pasadas de las partículas. Dinámica del sólido rígido

Artículo principal: mecánica del sólido rígido

La mecánica de un sólido rígido es aquella que estudia el movimiento y equilibrio de sólidos materiales ignorando sus deformaciones. Se trata, por tanto, de un modelo matemático útil para estudiar una parte de la mecánica de sólidos, ya que todos los sólidos reales son deformables. Se entiende por sólido rígido un conjunto de puntos del espacio que se mueven de tal manera que no se alteran las distancias entre ellos, sea cual sea la fuerza actuante (matemáticamente, el movimiento de un sólido rígido viene dado por un grupo uniparamétrico de isometrías).

 Conceptos relacionados con la dinámica

 Inercia

Artículos principales: inercia y masa inercial

La inercia es la propiedad de los cuerpos de no modificar su estado de reposo o movimiento de traslación uniforme, si sobre ellos no influyen otros cuerpos o si la acción de otros cuerpos se compensa.

En física se dice que un sistema tiene más inercia cuando resulta más difícil lograr un cambio en el estado físico del mismo. Los dos usos más frecuentes en física son la inercia mecánica y la inercia térmica. La primera de ellas aparece en mecánica y es una medida de dificultad para cambiar el estado de movimiento o reposo de un cuerpo. La inercia mecánica depende de la cantidad de masa y del tensor de inercia. La inercia térmica mide la dificultad con la que un cuerpo cambia su temperatura al estar en contacto con otros cuerpos o ser calentado. La inercia térmica depende de la cantidad de masa y de la capacidad calorífica.

Las llamadas fuerzas de inercia son fuerzas ficticias o aparentes que un observador en un sistema de referencia no-inercial.

La masa inercial es una medida de la resistencia de una masa al cambio en velocidad en relación con un sistema de referencia inercial. En física clásica la masa inercial de partículas puntuales se define por medio de la siguiente ecuación, donde la partícula uno se toma como la unidad (m1 =1):

donde mi es la masa inercial de la partícula i, y ai1 es la aceleración inicial de la partícula i, en la dirección de la partícula i hacia la partícula 1, en un volumen ocupado sólo por partículas i y 1, donde ambas partículas están inicialmente en reposo y a una distancia unidad. No hay fuerzas externas pero las partículas ejercen fuerza las unas en las otras..

 Trabajo y energía

El trabajo y la energía aparecen en la mecánica gracias a los teoremas energéticos. El principal, y de donde se derivan los demás teoremas, es el teorema de la energía. Este teorema se puede enunciar en versión diferencial o en versión integral. En adelante se hará referencia al Teorema de la energía cinética como TEC.

Gracias al TEC se puede establecer una relación entre la mecánica y las demás ciencias como, por ejemplo, la química y la electrotecnia, de dónde deriva su vital importancia.

Fuerza y potencial

La mecánica de partículas o medios continuos tiene formulaciones ligeramente diferentes en mecánica clásica, mecánica relativista y mecánica cuántica. En todas ellas las causas del cambio se representa mediante fuerzas o conceptos derivados como la energía potencial asociada al sistema de fuerzas. En las dos primeras se usa fundamentalmente el concepto de fuerza, mientras que en la mecánica cuántica es más frecuente plantear los problemas en términos de energía potencial. La fuerza resultante \scriptstyle \mathbf{F} sobre un sistema mecánico se relaciona con la variación de la cantidad de movimiento \scriptstyle \mathbf{F} mediante la relación simple:

\mathbf{F} = \frac{d\mathbf{P}}{dt}

Cuando el sistema mecánico es además conservativo la energía potencial \scriptstyle V se relaciona con la energía cinética \scriptstyle K asociada al movimiento mediante la relación:

\frac{dV}{dt} + \frac{dK}{dt} = 0

 Referencias

  1. Sylla, E.D. (2008). «Medieval dynamics». physics today 61 (4):  pp. 51-56.  Bibliografíarisma.com. «Dinámica del Cuerpo Rígido – Fundamentos». Consultado el 9 de diciembre de 2009.

Herramientas personales

Espacios de nombres

Variantes

Acciones

ECUACIONES DE CINEMATICA

Todos los cálculos relacionados con las magnitudes que describen los movimientos rectilíneos podemos hacerlos con estas dos ecuaciones:

   e = eo + vo·t + ½·a·t²   
vf = vo + a·t

e es el desplazamiento del móvil
eo es la posición inicial
t es el intervalo de tiempo que estamos considerando
vo es la velocidad inicial (al principio de nuestro intervalo de tiempo)
vf es la velocidad final (al final de nuestro intervalo de tiempo)
a es la aceleración
Estas ecuaciones se pueden adaptar según las características concretas del movimiento que estemos estudiando:Si el móvil parte del orígen de coordenadasSignifica que la posición inicial eo del cuerpo es cero. En este caso la ecuación del desplazamiento podemos escribirla así:

   e = vo·t + ½·a·t²   

Si el móvil parte del reposo 

Esto quiere decir que la velocidad inicial es cero. Al sustituir este valor en las ecuaciones anteriores, queda: 

   e = ½·a·t²   
vf = a·t

Si el movimiento es uniforme 

Es el movimiento de velocidad constante, es decir el movimiento con aceleración cero. 

Al dar valor 0 a la aceleración, las ecuaciones del principio quedan así:

   e = vo·t   
vf = vo
Ya habrás notado que no se trata de ecuaciones diferentes sino de las mismas ecuaciones adaptadas a dos casos concretos, por tanto no es necesario que aprendas de memoria todas las ecuaciones: con las dos primeras y un análisis de la situación tienes suficiente.

Cómo resolver los ejercicios 

Para resolver un ejercicio no basta con aplicar las ecuaciones. Es necesario seguir un método o estrategia que podemos resumir así: 

  1. Dibuja un diagrama con la situación propuesta.
  2. Identifica las variables que conocemos y ponlas en una lista de datos.
  3. Identifica las variables desconocidas y ponlas en la lista de incógnitas.
  4. Identifica la ecuación con la que vas a obtener el resultado y comprueba si tienes todos los datos necesarios o debes calcular alguno con la otra ecuación.
  5. Sustituye los valores en las ecuaciones y realiza los pasos y las operaciones que necesites para obtener el resultado.
  6. Comprueba que tu resultado sea correcto matemáticamente y que sea razonable desde el punto de vista físico.

Ejemplo

Imagina que el conductor de una moto que circula 25 m/s pisa el freno hasta detenerse cuando ve que el semáforo se pone en ámbar. Si los frenos producen una aceleración de -5 m/s², ¿cuál será el desplazamiento durante el proceso de frenado?

Comenzamos haciendo un esquema informativo de la situación física, que aparece un poco más abajo.El segundo paso consiste en identificar los datos que nos proporcionan. Observa que la velocidad final vf es cero porque nos dicen que la moto se detiene. La velocidad inicial vo de la moto es +25 m/s porque esa es la velocidad al inicio del movimiento que estamos estudiando (el movimiento de frenado). La aceleración a es -5 m/s². Presta mucha atención a los signos + y – que tienen las magnitudes.El siguiente paso es saber qué queremos calcular. En nuestro caso, tenemos que determinar el desplazamiento e de la moto mientras frena.A continuación tienes el resultado de los tres primeros pasos: 

Esquema:

 

Datos:

 vo = +25 m/s  

vf = 0 m/s 

a = -5 m/s² 

Buscamos:

e = ? 

El cuarto paso consiste en decidir con qué ecuación podemos calcular lo que nos piden y comprobar si tenemos todos los datos que necesitamos. En nuestro caso usaremos la ecuación: 

   e = vo·t + ½·a·t²   
Observa que no podemos calcular e hasta que conozcamos el tiempo t que dura la frenada. Lo podemos calcular con la otra ecuación:

vf = vo + a·t

Si sustituimos los valores conocidos de vf, vo y a, tenemos:
0 = 25 m/s + (-5) m/s²·t
-25 m/s = -5 m/s²·t
t = -25 m/s / -5 m/s² = 5 s
Una vez calculado el tiempo que dura el movimiento, procedemos a determinar el desplazamiento:
e = 25 m/s · 5s + ½ (-5)m/s²·(5s)²
e = 125 m – 62,5 m = 62,5 me = 62,5 m 

Hemos llegado a la conclusión de que la moto recorre 62,5 m durante el proceso de frenada.El último paso consiste en comprobar que la solución que damos es correcta y razonable. La solución, en este caso, representa el desplazamiento que realiza la moto desde que se pisa el freno hasta que se detiene. Parece razonable que si se circula a 90 km/h (25 m/s), la distancia necesaria para detener la moto sea aproximadamente las dos terceras partes de un campo de fútbol, similar a la que nosotros hemos obtenido.Para comprobar si los cálculos matemáticos son correctos, sustituye los valores de t y de e que hemos calculado en ambas ecuaciones del movimiento y comprueba que la parte izquierda de cada ecuación sea igual que la derecha. 

  1. No trackbacks yet.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: