ecuaciones de cinematicas de omar

Ecuaciones

Todos los cálculos relacionados con las magnitudes que describen los movimientos rectilíneos podemos hacerlos con estas dos ecuaciones:

   e = eo + vo·t + ½·a·t²   
vf = vo + a·t

e es el desplazamiento del móvil
eo es la posición inicial
t es el intervalo de tiempo que estamos considerando
vo es la velocidad inicial (al principio de nuestro intervalo de tiempo)
vf es la velocidad final (al final de nuestro intervalo de tiempo)
a es la aceleración

Estas ecuaciones se pueden adaptar según las características concretas del movimiento que estemos estudiando:

Si el móvil parte del orígen de coordenadas

Significa que la posición inicial eo del cuerpo es cero. En este caso la ecuación del desplazamiento podemos escribirla así:

   e = vo·t + ½·a·t²   

Si el móvil parte del reposo

Esto quiere decir que la velocidad inicial es cero. Al sustituir este valor en las ecuaciones anteriores, queda:

   e = ½·a·t²   
vf = a·t

Si el movimiento es uniforme

Es el movimiento de velocidad constante, es decir el movimiento con aceleración cero.

Al dar valor 0 a la aceleración, las ecuaciones del principio quedan así:

   e = vo·t   
vf = vo

Ya habrás notado que no se trata de ecuaciones diferentes sino de las mismas ecuaciones adaptadas a dos casos concretos, por tanto no es necesario que aprendas de memoria todas las ecuaciones: con las dos primeras y un análisis de la situación tienes suficiente.

Cómo resolver los ejercicios

Para resolver un ejercicio no basta con aplicar las ecuaciones. Es necesario seguir un método o estrategia que podemos resumir así:

  1. Dibuja un diagrama con la situación propuesta.
  2. Identifica las variables que conocemos y ponlas en una lista de datos.
  3. Identifica las variables desconocidas y ponlas en la lista de incógnitas.
  4. Identifica la ecuación con la que vas a obtener el resultado y comprueba si tienes todos los datos necesarios o debes calcular alguno con la otra ecuación.
  5. Sustituye los valores en las ecuaciones y realiza los pasos y las operaciones que necesites para obtener el resultado.
  6. Comprueba que tu resultado sea correcto matemáticamente y que sea razonable desde el punto de vista físico.

 

Ejemplo
Imagina que el conductor de una moto que circula 25 m/s pisa el freno hasta detenerse cuando ve que el semáforo se pone en ámbar. Si los frenos producen una aceleración de -5 m/s², ¿cuál será el desplazamiento durante el proceso de frenado?

Comenzamos haciendo un esquema informativo de la situación física, que aparece un poco más abajo.

El segundo paso consiste en identificar los datos que nos proporcionan. Observa que la velocidad final vf es cero porque nos dicen que la moto se detiene. La velocidad inicial vo de la moto es +25 m/s porque esa es la velocidad al inicio del movimiento que estamos estudiando (el movimiento de frenado). La aceleración a es -5 m/s². Presta mucha atención a los signos + y – que tienen las magnitudes.

El siguiente paso es saber qué queremos calcular. En nuestro caso, tenemos que determinar el desplazamiento e de la moto mientras frena.

A continuación tienes el resultado de los tres primeros pasos:

Esquema: Datos: vo = +25 m/s 

vf = 0 m/s

a = -5 m/s²

Buscamos:e = ?

El cuarto paso consiste en decidir con qué ecuación podemos calcular lo que nos piden y comprobar si tenemos todos los datos que necesitamos. En nuestro caso usaremos la ecuación:

   e = vo·t + ½·a·t²   

Observa que no podemos calcular e hasta que conozcamos el tiempo t que dura la frenada. Lo podemos calcular con la otra ecuación:

vf = vo + a·t

Si sustituimos los valores conocidos de vf, vo y a, tenemos:

0 = 25 m/s + (-5) m/s²·t
-25 m/s = -5 m/s²·t
t = -25 m/s / -5 m/s² = 5 s

Una vez calculado el tiempo que dura el movimiento, procedemos a determinar el desplazamiento:

e = 25 m/s · 5s + ½ (-5)m/s²·(5s)²
e = 125 m – 62,5 m = 62,5 m

e = 62,5 m

Hemos llegado a la conclusión de que la moto recorre 62,5 m durante el proceso de frenada.

El último paso consiste en comprobar que la solución que damos es correcta y razonable. La solución, en este caso, representa el desplazamiento que realiza la moto desde que se pisa el freno hasta que se detiene. Parece razonable que si se circula a 90 km/h (25 m/s), la distancia necesaria para detener la moto sea aproximadamente las dos terceras partes de un campo de fútbol, similar

 

Caída libre

Se le llama caída libre al movimiento que se debe únicamente a la influencia de la gravedad.

  • Todos los cuerpos con este tipo de movimiento tienen una aceleración dirigida hacia abajo cuyo valor depende del lugar en el que se encuentren. En la Tierra este valor es de aproximadamente 9,8 m/s², es decir que los cuerpos dejados en caída libre aumentan su velocidad (hacia abajo) en 9,8 m/s cada segundo .
  • En la caída libre no se tiene en cuenta la resistencia del aire.

La aceleración a la que se ve sometido un cuerpo en caída libre es tan importante en la Física que recibe el nombre especial de aceleración de la gravedad y se representa mediante la letra g.

Lugar g (m/s²)   Hemos dicho antes que la aceleración de un cuerpo en caída libre dependía del lugar en el que se encontrara. A la izquierda tienes algunos valores aproximados de g en diferentes lugares de nuestro Sistema Solar.Para hacer más cómodos los cálculos de clase solemos utilizar para la aceleración de la gravedad en la Tierra el valor aproximado de 10 m/s² en lugar de 9,8 m/s², que sería más correcto.
Mercurio 2,8
Venus 8,9
Tierra 9,8
Marte 3,7
Júpiter 22,9
Saturno 9,1
Urano 7,8
Neptuno 11,0
Luna 1,6

En el gráfico y en la tabla se puede ver la posición de un cuerpo en caída libre a intervalos regulares de 1 segundo.

Para realizar los cálculos se ha utilizado el valor g = 10 m/s².

Observa que la distancia recorrida en cada intervalo es cada vez mayor y eso es un signo inequívoco de que la velocidad va aumentando hacia abajo.

tiempo (s)   0     1     2     3     4     5     6     7  
posición (m) 0 -5 -20 -45 -80 -125 -180 -245

Ahora es un buen momento para repasar las páginas que se refieren a la interpretación de las gráficas e-t y v-t y recordar lo que hemos aprendido sobre ellas.

Ya hemos visto que las gráficas posición-tiempo y velocidad-tiempo pueden proporcionarnos mucha información sobre las características de un movimiento.

Para la caída libre, la gráfica posición tiempo tiene la siguiente apariencia:

Recuerda que en las gráficas posición-tiempo, una curva indicaba la existencia de aceleración.

La pendiente cada vez más negativa nos indica que la velocidad del cuerpo es cada vez más negativa, es decir cada vez mayor pero dirigida hacia abajo. Esto significa que el movimiento se va haciendo más rápido a medida que transcurre el tiempo.

 

Observa la gráfica v-t de la derecha que corresponde a un movimiento de caída libre.

Su forma recta nos indica que la aceleración es constante, es decir que la variación de la velocidad en intervalos regulares de tiempo es constante.

tiempo (s)   0   1 2 3 4 5
velocidad (m/s)   0    -10   -20   -30   -40   -50 

La pendiente negativa nos indica que la aceleración es negativa. En la tabla anterior podemos ver que la variación de la velocidad a intervalos de un segundo es siempre la misma (-10 m/s). Esto quiere decir que la aceleración para cualquiera de los intervalos de tiempo es:

g = -10 m/s / 1s = -10 m/s/s = -10 m/s²

Ecuaciones para la caída libre

Recuerda las ecuaciones generales del movimiento:

e = vo·t + ½·a·t²
vf = vo + a·t

Podemos adaptar estas ecuaciones para el movimiento de caída libre. Si suponemos que dejamos caer un cuerpo (en lugar de lanzarlo), entonces su velocidad inicial será cero y por tanto el primer sumando de cada una de las ecuaciones anteriores también será cero, y podemos eliminarlos:

e = ½·a·t²
vf = a·t

Por otro lado, en una caída libre la posición que ocupa el cuerpo en un instante es precisamente su altura h en ese momento.

Como hemos quedado en llamar g a la aceleración que experimenta un cuerpo en caída libre, podemos expresar las ecuaciones así:

  h = ½·g·t²
vf = g·t

¿Una contradicción?

Si has estudiado con atención ésta página, estarás sorprendido porque hemos comenzado diciendo que la aceleración de la gravedad tiene un valor en la Tierra de 10 m/s² y, sin embargo, al realizar el estudio gráfico hemos llegado a la conclusión de que se trataba de un valor negativo: -10 m/s².

Recuerda que todas las observaciones que hacemos sobre las características de un movimiento dependen del sistema de referencia elegido (generalmente la Tierra).

En ocasiones nos interesa cambiar nuestro sistema de referencia para expresar los datos con mayor comodidad.

En el caso de la caída libre, parece lógico situar el sistema de referencia en la posición inicial del cuerpo para medir el alejamiento que experimenta y asignar valores positivos a las distancias recorridas hacia abajo.

tiempo (s)   0     1     2     3     4     5     6     7  
posición (m) 0 5 20 45 80 125 180 245

Esto significa que ahora estamos considerando sentido positivo hacia abajo y sentido negativo hacia arriba, por lo que la gráfica posición-tiempo sería como la anterior.

De la nueva gráfica posición-tiempo deducimos que ahora la velocidad es positiva (hacia abajo) y cada vez mayor porque la pendiente es positiva y cada vez mayor.

El valor que obtenemos ahora para g es +10 m/s², pero no se trata de una contradicción.

Recuerda que hay un convenio para interpretar qué sentido tiene la aceleración:

Si el móvil está disminuyendo su rapidez (está frenando), entonces su aceleración va en el sentido contrario al movimiento.

Si el móvil aumenta su rapidez, la aceleración tiene el mismo sentido que la velocidad.

Si aplicamos este convenio nos damos cuenta de que el sentido de g no ha cambiado: sigue siendo hacia abajo.

El siguiente applet simula la caída libre de un cuerpo en diferentes condiciones de gravedad y dibuja las gráficas v-t que corresponden a nuestro nuevo sistema de referencia. Se trata de un cuerpo que lleva enganchada una tira de papel sobre la que un dispositivo realiza marcas a intervalos regulares de tiempo:

 

Habrás observado al trabajar con el applet que las gráficas v-t cambian al modificar los valores de g pero no ocurre lo mismo si variamos la masa del cuerpo.

Puede que esto te parezca extraño pero no olvides que sólo llamamos caída libre al movimiento que únicamente está influido por la gravedad.

Si tuviésemos en cuenta la resistencia del aire, sí que tendrían importancia la masa y la forma del cuerpo, pero no se trataría de una caída libre.

Por cierto, ¿sabrías determinar la escala utilizada en el applet para el tiempo y la velocidad?

¿Subir en caída libre?

¡Pues sí!

Si lanzamos un cuerpo verticalmente hacia arriba, alcanzará una altura máxima y después caera. Tanto la fase de subida como la de bajada son de caída libre porque así llamamos a los movimientos que sólo dependen de la gravedad.

Mientras el cuerpo va hacia arriba, su rapidez disminuye y por lo tanto la gravedad estará dirigida en sentido contrario, es decir hacia abajo.

Veamos un ejemplo:

Supón que estamos en la Luna y lanzamos un cuerpo verticalmente hacia arriba con una rapidez de 30 m/s, ¿qué altura máxima alcanzará?

Al encontrarnos en la Luna, utilizaremos el valor de g que aparece en la tabla. Como la rapidez del movimiento irá disminuyendo hasta hacerse cero en el punto de altura máxima, la gravedad será de sentido contrario al de la velocidad. Así, el valor de la gravedad que debemos utilizar es g = -1,6 m/s².

La velocidad final es cero ya que es la velocidad que tiene el cuerpo cuando alcanza su altura máxima, y ese instante es el final de nuestro estudio (no nos preguntan lo que ocurre después de ese momento).

Esquema: Datos: Buscamos:
   vo = +20 m/s vf = 0 m/s

g = -1,6 m/s²

h = ?

Para calcular la altura debemos utilizar la ecuación:

h = vo·t + ½·g·t²
pero necesitamos saber, previamente, el tiempo en el que se alcanzará la altura máxima, para lo que utilizaremos la ecuación:

vf = vo + g·t

0 = 20 m/s + (-1,6) m/s²·t

-20 m/s = -1,6 m/s²·t

t = (-20 m/s)/(-1,6 m/s²) = 12,5 s

Ya podemos calcular la altura:

h = vo·t + ½·g·t²

h = 20 m/s·12,5 s + 0,5·(-1,6 m/s²)·(12,5 s)²

h = 250 m – 125 m = 125 m

Este resultado no es exagerado ya que hemos hecho los cálculos para la Luna, donde la gravedad es unas seis veces menor que en la Tierra.

¿Sabrías calcular, basándote en esta aproximación, la altura que hubiese alcanzado en la Tierra

Cinemática

De Wikipedia, la enciclopedia libre

Saltar a navegación, búsqueda

La Cinemática (del griego κινεω, kineo, movimiento) es la rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo producen, limitándose, esencialmente, al estudio de la trayectoria en función del tiempo.

En la Cinemática se utiliza un sistema de coordenadas para describir las trayectorias, denominado sistema de referencia. La velocidad es el ritmo con que cambia la posición un cuerpo. La aceleración es el ritmo con que cambia su velocidad. La velocidad y la aceleración son las dos principales cantidades que describen cómo cambia su posición en función del tiempo.

Contenido

[ocultar]

[editar] Historia

Los primeros conceptos sobre Cinemática se remontan al siglo XIV, particularmente aquellos que forman parte de la doctrina de la intensidad de las formas o teoría de los cálculos (calculationes). Estos desarrollos se deben a científicos como William Heytesbury y Richard Swineshead, en Inglaterra, y a otros, como Nicolás Oresme, de la escuela francesa.

Hacia el 1604, Galileo Galilei hizo sus famosos estudios del movimiento de caída libre y de esferas en planos inclinados a fin de comprender aspectos del movimiento relevantes en su tiempo, como el movimiento de los planetas y de las balas de cañón.[1] Posteriormente, el estudio de la cicloide realizado por Evangelista Torricelli (1608-47), va configurando lo que se conocería como Geometría del Movimiento.

El nacimiento de la Cinemática moderna tiene lugar con la alocución de Pierre Varignon el 20 de enero de 1700 ante la Academia Real de las Ciencias de París.[2] En esta ocasión define la noción de aceleración y muestra cómo es posible deducirla de la velocidad instantánea con la ayuda de un simple procedimiento de cálculo diferencial.

En la segunda mitad del siglo XVIII se produjeron más contribuciones por Jean Le Rond d’Alembert, Leonhard Euler y André-Marie Ampère, continuando con el enunciado de la ley fundamental del centro instantáneo de rotación en el movimiento plano, de Daniel Bernoulli (1700-1782).

El vocablo Cinemática fue creado por André-Marie Ampère (1775-1836), quien delimitó el contenido de la Cinemática y aclaró su posición dentro del campo de la Mecánica. Desde entonces y hasta nuestros días la Cinemática ha continuado su desarrollo hasta adquirir una estructura propia.

Con la Teoría de la relatividad especial de Albert Einstein en 1905 se inició una nueva etapa, la Cinemática relativista, donde el tiempo y el espacio no son absolutos, y sí lo es la velocidad de la luz.

[editar] Elementos básicos de la Cinemática

Los elementos básicos de la Cinemática son: espacio, tiempo y móvil.

En la Mecánica Clásica se admite la existencia de un espacio absoluto; es decir, un espacio anterior a todos los objetos materiales e independiente de la existencia de estos. Este espacio es el escenario donde ocurren todos los fenómenos físicos, y se supone que todas las leyes de la física se cumplen rigurosamente en todas las regiones de ese espacio. El espacio físico se representa en la Mecánica Clásica mediante un espacio puntual euclídeo.

Análogamente, la Mecánica Clásica admite la existencia de un tiempo absoluto que transcurre del mismo modo en todas las regiones del Universo y que es independiente de la existencia de los objetos materiales y de la ocurrencia de los fenómenos físicos.

El móvil más simple que podemos considerar es el punto material o partícula; cuando en la Cinemática se estudia este caso particular de móvil, se denomina “Cinemática de la partícula”; y cuando el móvil bajo estudio es un cuerpo rígido, se lo puede considerar como un sistema de partículas y hacer extensivos similares conceptos; en este caso se la denomina Cinemática del sólido rígido o del cuerpo rígido.

[editar] Cinemática clásica. Fundamentos

La Cinemática trata del estudio del movimiento de los cuerpos en general, y, en particular, el caso simplificado del movimiento de un punto material. Para sistemas de muchas partículas, tales como los fluidos, las leyes de movimiento se estudian en la mecánica de fluidos.

El movimiento trazado por una partícula lo mide un observador respecto a un sistema de referencia. Desde el punto de vista matemático, la Cinemática expresa cómo varían las coordenadas de posición de la partícula (o partículas) en función del tiempo. La función que describe la trayectoria recorrida por el cuerpo (o partícula) depende de la velocidad (la rapidez con la que cambia de posición un móvil) y de la aceleración (variación de la velocidad respecto del tiempo).

El movimiento de una partícula (o cuerpo rígido) se puede describir según los valores de velocidad y aceleración, que son magnitudes vectoriales.

  • Si la aceleración es nula, da lugar a un movimiento rectilíneo uniforme y la velocidad permanece constante a lo largo del tiempo.
  • Si la aceleración es constante con igual dirección que la velocidad, da lugar al movimiento rectilíneo uniformemente acelerado y la velocidad variará a lo largo del tiempo.
  • Si la aceleración es constante con dirección perpendicular a la velocidad, da lugar al movimiento circular uniforme, donde el módulo de la velocidad es constante, cambiando su dirección con el tiempo.
  • Cuando la aceleración es constante y está en el mismo plano que la velocidad y la trayectoria, tenemos el caso del movimiento parabólico, donde la componente de la velocidad en la dirección de la aceleración se comporta como un movimiento rectilíneo uniformemente acelerado, y la componente perpendicular se comporta como un movimiento rectilíneo uniforme, generándose una trayectoria parabólica al componer ambas.
  • Cuando la aceleración es constante pero no está en el mismo plano que la velocidad y la trayectoria, se observa el efecto de Coriolis.
  • En el movimiento armónico simple se tiene un movimiento periódico de vaivén, como el del péndulo, en el cual un cuerpo oscila a un lado y a otro desde la posición de equilibrio en una dirección determinada y en intervalos iguales de tiempo. La aceleración y la velocidad son funciones, en este caso, sinusoidales del tiempo.

Al considerar el movimiento de traslación de un cuerpo extenso, en el caso de ser rígido, conociendo como se mueve una de las partículas, se deduce como se mueven las demás. Así basta describir el movimiento de una partícula puntual tal como el centro de masa del cuerpo para especificar el movimiento de todo el cuerpo. En la descripción del movimiento de rotación hay que considerar el eje de rotación respecto del cual rota el cuerpo y la distribución de partículas respecto al eje de giro. El estudio del movimiento de rotación de un sólido rígido suele incluirse en la temática de la mecánica del sólido rígido por ser más complicado. Un movimiento interesante es el de una peonza, que al girar puede tener un movimiento de precesión y de nutación

Cuando un cuerpo posee varios movimientos simultáneamente, tal como uno de traslación y otro de rotación, se puede estudiar cada uno por separado en el sistema de referencia que sea apropiado para cada uno, y luego, superponer los movimientos.

[editar] Sistemas de coordenadas

Artículo principal: Sistema de coordenadas

En el estudio del movimiento, los sistemas de coordenadas más útiles se encuentran viendo los límites de la trayectoria a recorrer, o analizando el efecto geométrico de la aceleración que afecta al movimiento. Así, para describir el movimiento de un talón obligado a desplazarse a lo largo de un aro circular, la coordenada más útil sería el ángulo trazado sobre el aro. Del mismo modo, para describir el movimiento de una partícula sometida a la acción de una fuerza central, las coordenadas polares serían las más útiles.

En la gran mayoría de los casos, el estudio cinemático se hace sobre un sistema de coordenadas cartesianas, usando una, dos o tres dimensiones según la trayectoria seguida por el cuerpo.

[editar] Registro del movimiento

La tecnología hoy en día nos ofrece muchas formas de registrar el movimiento efectuado por un cuerpo. Así, para medir la velocidad se dispone del radar de tráfico cuyo funcionamiento se basa en el efecto Doppler. El taquímetro es un indicador de la velocidad de un vehículo basado en la frecuencia de rotación de las ruedas. Los caminantes disponen de podómetros que detectan las vibraciones características del paso y, suponiendo una distancia media característica para cada paso, permiten calcular la distancia recorrida. El vídeo, unido al análisis informático de las imágenes, permite igualmente determinar la posición y la velocidad de los vehículos.

[editar] Movimiento rectilíneo

Artículo principal: Movimiento rectilíneo

Es aquel en el que el móvil describe una trayectoria en línea recta.

[editar] Movimiento rectilíneo uniforme

Artículo principal: Movimiento rectilíneo uniforme

Figura 1. Variación en el tiempo de la posición y la velocidad para un movimiento rectilíneo uniforme.

Para este caso la aceleración es cero por lo que la velocidad permanece constante a lo largo del tiempo. Esto corresponde al movimiento de un objeto lanzado en el espacio fuera de toda interacción, o al movimiento de un objeto que se desliza sin fricción. Siendo la velocidad v constante, la posición variará linealmente respecto del tiempo, según la ecuación:

 

 

donde es la posición inicial del móvil respecto al centro de coordenadas, es decir para .

Si la ecuación anterior corresponde a una recta que pasa por el origen, en una representación gráfica de la función , tal como la mostrada en la figura 1.

[editar] Movimiento rectilíneo uniformemente acelerado

Artículo principal: Movimiento rectilíneo uniformemente acelerado

Figura 2. Variación en el tiempo de la posición, la velocidad y la aceleración en un movimiento rectilíneo uniformemente acelerado.

En éste movimiento la aceleración es constante, por lo que la velocidad de móvil varía linealmente y la posición cuadráticamente con tiempo. Las ecuaciones que rigen este movimiento son las siguientes:

 

 

 

Donde es la posición inicial del móvil y su velocidad inicial, aquella que tiene para .

Obsérvese que si la aceleración fuese nula, las ecuaciones anteriores corresponderían a las de un movimiento rectilíneo uniforme, es decir, con velocidad constante.

Dos casos específicos de MRUA son la caída libre y el tiro vertical. La caída libre es el movimiento de un objeto que cae en dirección al centro de la Tierra con una aceleración equivalente a la aceleración de la gravedad (que en el caso del planeta Tierra al nivel del mar es de aproximadamente 9,8 m/s2). El tiro vertical, en cambio, corresponde al de un objeto arrojado en la dirección opuesta al centro de la tierra, ganando altura. En este caso la aceleración de la gravedad, provoca que el objeto vaya perdiendo velocidad, en lugar de ganarla, hasta llegar al estado de reposo; seguidamente, y a partir de allí, comienza un movimiento de caída libre con velocidad inicial nula.

[editar] Movimiento armónico simple

Artículo principal: Movimiento armónico simple

Una masa colgada de un muelle se mueve con un movimiento armónico simple.

Es un movimiento periódico de vaivén, en el que un cuerpo oscila a un lado y a otro de una posición de equilibrio en una dirección determinada y en intervalos iguales de tiempo. Matemáticamente, la trayectoria recorrida se expresa en función del tiempo usando funciones trigonométricas, que son periódicas. Así por ejemplo, la ecuación de posición respecto del tiempo, para el caso de movimiento en una dimensión es:

 

la que corresponde a una función sinusoidal de frecuencia , de amplitud A y fase de inicial .

Los movimientos del péndulo, de una masa unida a un muelle o la vibración de los átomos en las redes cristalinas son de estas características.

La aceleración que experimenta el cuerpo es proporcional al desplazamiento del objeto y de sentido contrario, desde el punto de equilibrio. Matemáticamente:

 

donde es una constante positiva y se refiere a la elongación (desplazamiento del cuerpo desde la posición de equilibrio).

Figura 3. Variación de la posición respecto del tiempo para el movimiento oscilatorio armónico.

La solución a esa ecuación diferencial lleva a funciones trigonométricas de la forma anterior. Lógicamente, un movimiento periódico oscilatorio real se ralentiza en el tiempo (por fricción mayormente), por lo que la expresión de la aceleración es más complicada, necesitando agregar nuevos términos relacionados con la fricción. Una buena aproximación a la realidad es el estudio del movimiento oscilatorio amortiguado.

Véase también: Oscilador armónico

[editar] Movimiento parabólico

Artículo principal: Movimiento parabólico

Figura 4. Esquema de la trayectoria del movimiento balístico.

Objeto disparado con un ángulo inicial desde un punto que sigue una trayectoria parabólica.

El movimiento parabólico se puede analizar como la composición de dos movimientos rectilíneos distintos: uno horizontal (según el eje x) de velocidad constante y otro vertical (según eje y) uniformemente acelerado, con la aceleración gravitatoria; la composición de ambos da como resultado una trayectoria parabólica.

Claramente, la componente horizontal de la velocidad permanece invariable, pero la componente vertical y el ángulo θ cambian en el transcurso del movimiento.

En la figura 4 se observa que el vector velocidad inicial forma un ángulo inicial respecto al eje x; y, como se dijo, para el análisis se descompone en los dos tipos de movimiento mencionados; bajo este análisis, las componentes según x e y de la velocidad inicial serán:

 

 

El desplazamiento horizontal está dado por la ley del movimiento uniforme, por tanto sus ecuaciones serán (si se considera ):

 

 

 

En tanto que el movimiento según el eje será rectilíneo uniformemente acelerado, siendo sus ecuaciones:

 

 

 

Si se reemplaza y opera para eliminar el tiempo, con las ecuaciones que dan las posiciones e , se obtiene la ecuación de la trayectoria en el plano xy:

 

que tiene la forma general

 

y representa una parábola en el plano y(x). En la figura 4 se muestra esta representación, pero en ella se ha considerado (no así en la animación respectiva). En esa figura también se observa que la altura máxima en la trayectoria parabólica se producirá en H, cuando la componente vertical de la velocidad sea nula (máximo de la parábola); y que el alcance horizontal ocurrirá cuando el cuerpo retorne al suelo, en (donde la parábola corta al eje ).

[editar] Movimiento circular

Artículo principal: Movimiento circular

El movimiento circular en la práctica es un tipo muy común de movimiento: Lo experimentan, por ejemplo, las partículas de un disco que gira sobre su eje, las de una noria, las de las agujas de un reloj, las de las paletas de un ventilador, etc. Para el caso de un disco en rotación alrededor de un eje fijo, cualquiera de sus puntos describe trayectorias circulares, realizando un cierto número de vueltas durante determinado intervalo de tiempo. Para la descripción de este movimiento resulta conveniente referirse ángulos recorridos; ya que estos últimos son idénticos para todos los puntos del disco (referido a un mismo centro). La longitud del arco recorrido por un punto del disco depende de su posición y es igual al producto del ángulo recorrido por su distancia al eje o centro de giro. La velocidad angular (ω) se define como el desplazamiento angular respecto del tiempo, y se representa mediante un vector perpendicular al plano de rotación; su sentido se determina aplicando la “regla de la mano derecha” o del sacacorchos. La aceleración angular (α) resulta ser variación de velocidad angular respecto del tiempo, y se representa por un vector análogo al de la velocidad angular, pero puede o no tener el mismo sentido (según acelere o retarde).

La velocidad (v) de una partícula es una magnitud vectorial cuyo módulo expresa la longitud del arco recorrido (espacio) por unidad de tiempo tiempo; dicho módulo también se denomina rapidez o celeridad. Se representa mediante un vector cuya dirección es tangente a la trayectoria circular y su sentido coincide con el del movimiento.

La aceleración (a) de una partícula es una magnitud vectorial que indica la rapidez con que cambia la velocidad respecto del tiempo; esto es, el cambio del vector velocidad por unidad de tiempo. La aceleración tiene generalmente dos componentes: la aceleración tangencial a la trayectoria y la aceleración normal a ésta. La aceleración tangencial es la que causa la variación del módulo de la velocidad (celeridad) respecto del tiempo, mientras que la aceleración normal es la responsable del cambio de dirección de la velocidad. Los módulos de ambas componentes de la aceleración dependen de la la distancia a la que se encuentre la partícula respecto del eje de giro.

[editar] Movimiento circular uniforme

Figura 5. Dirección de magnitudes físicas en una trayectoria circular de radio 1.

Artículo principal: Movimiento circular uniforme

Se caracteriza por tener una velocidad angular constante por lo que la aceleración angular es nula. La velocidad lineal de la partícula no varía en módulo, pero sí en dirección. La aceleración tangencial es nula; pero existe aceleración centrípeta (la aceleración normal), que es causante del cambio de dirección.

Matemáticamente, la velocidad angular se expresa como:

 

 

donde es la velocidad angular (constante), es la variación del ángulo barrido por la partícula y es la variación del tiempo.

El ángulo recorrido en un intervalo de tiempo es:

 

[editar] Movimiento circular uniformemente acelerado

Artículo principal: Movimiento circular uniformemente acelerado

En este movimiento, la velocidad angular varía linealmente respecto del tiempo, por estar sometido el móvil a una aceleración angular constante. Las ecuaciones de movimiento son análogas a las del rectilíneo uniformemente acelerado, pero usando ángulos en vez de distancias:

 

 

 

siendo la aceleración angular constante.

[editar] Formulación matemática con el cálculo diferencial

La velocidad es la derivada temporal del vector de posición y la aceleración es la derivada temporal de la velocidad:

 

 

o bien sus expresiones integrales:

 

 

Véase también: Cálculo diferencial

[editar] Movimiento sobre la Tierra

Al observar el movimiento sobre la Tierra de cuerpos tales como masas de aire en meteorología o de proyectiles, se encuentran unas desviaciones provocadas por el llamado Efecto Coriolis. Ellas son usadas para probar que la Tierra está rotando sobre su eje. Desde el punto de vista cinemático es interesante explicar lo que ocurre al considerar la trayectoria observada desde un sistema de referencia que está en rotación, la Tierra.

Supongamos que un cañón situado en el ecuador lanza un proyectil hacia el norte a lo largo de un meridiano. Un observador situado al norte sobre el meridiano observa que el proyectil cae al este de lo predicho, desviándose a la derecha de la trayectoria. De forma análoga, si el proyectil se hubiera disparado a lo largo del meridiano hacia el sur, el proyectil también se habría desviado hacia el este, en este caso hacia la izquierda de la trayectoria seguida. La explicación de esta “desviación”, provocada por el Efecto Coriolis, es debida a la rotación de la Tierra. El proyectil tiene una velocidad con tres componentes: las dos que afectan al tiro parabólico, hacia el norte (o el sur) y hacia arriba, respectivamente, más una tercera componente perpendicular a las anteriores debida a que el proyectil, antes de salir del cañón, tiene una velocidad igual a la velocidad de rotación de la Tierra en el ecuador. Esta última componente de velocidad es la causante de la desviación observada pues si bien la velocidad angular de rotación de la Tierra es constante sobre toda su superficie, no lo es la velocidad lineal de rotación, la cual es máxima en el ecuador y nula en el centro de los polos. Así, el proyectil conforme avanza hacia el norte (o el sur), se mueve más rápido hacia el este que la superficie de la Tierra, por lo que se observa la desviación mencionada. Lógicamente, si la Tierra no estuviese rotando sobre sí misma, no se daría esta desviación.

Otro caso interesante de movimiento sobre la Tierra es el del péndulo de Foucault. El plano de oscilación del péndulo no permanece fijo, sino que lo observamos girar, girando en sentido horario en el hemisferio norte y en sentido antihorario en el hemisferio sur. Si el péndulo se pone a oscilar en el ecuador, el plano de oscilación no cambia. En cambio, en los polos, el giro del plano de oscilación toma un día. Para latitudes intermedias toma valores mayores, dependiendo de la latitud. La explicación de tal giro se basa en los mismos principios hechos anteriormente para el proyectil de artillería.

[editar] Cinemática Relativista

Artículos principales: Relatividad Especial y Cinemática relativista

Movimiento relativista bajo fuerza constante: aceleración (azul), velocidad (verde) y desplazamiento (rojo).

En relatividad, lo que es absoluto es la velocidad de la luz en el vacío, no el espacio o el tiempo. Todo observador en un sistema de referencia inercial, no importa su velocidad relativa, va a medir la misma velocidad para la luz que otro observador en otro sistema. Esto no es posible desde el punto de vista clásico. Las transformaciones de movimiento entre dos sistemas de referencia deben tener en cuenta este hecho, de lo que surgieron las transformaciones de Lorentz. En ellas se ve que las dimensiones espaciales y el tiempo están relacionadas, por lo que en relatividad es normal hablar del espacio-tiempo y de un espacio cuatridimensional.

Hay muchas evidencias experimentales de los efectos relativistas. Por ejemplo el tiempo medido en un laboratorio para la desintegración de una partícula que ha sido generada con una velocidad próxima a la de la luz es superior al de desintegración medido cuando la partícula se genera en reposo respecto al laboratorio. Esto se explica por la dilatación temporal relativista que ocurre en el primer caso.

La Cinemática es un caso especial de geometría diferencial de curvas, en el que todas las curvas se parametrizan de la misma forma: con el tiempo. Para el caso relativista, el tiempo coordenado es una medida relativa para cada observador, por tanto se requiere el uso de algún tipo de medida invariante como el intervalo relativista o equivalentemente para partículas con masa el tiempo propio. La relación entre el tiempo coordenado de un observador y el tiempo propio viene dado por el factor de Lorentz.[3]

  1. No trackbacks yet.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: